Letting the cat out of the bag!

Back in September 2018, we got a new addition to the LCM+L computer collection, but we didn’t talk about it. This was something that we had been looking for for 10 years or more. We knew where a couple of these machines were, but were not able to convince the owner of that collection to part with one. We kept looking, but the ones this collector had were the only ones we could find. Well, that isn’t quite true, Stephen Jones and I went down to the San Francisco Bay area to visit the Computer History Museum, and photograph one they had in their warehouse, but they weren’t willing to part with it. We thought maybe we could build one.

Stephen went to Australia on a hunt, and came back with some bits of one of these, but not a whole machine.

Stephen finally got the owner of the big collection in Sweden on the phone, and got him, Peter Lothberg, to talk to us again about his collection in late spring last year. A bunch more negotiations happened. Paul Allen was brought in, and a contract was signed.

A couple of our Archivists, Cynde Moya and Ameila Roberts, along with Stephen Jones and Jeff Kaylin, from Engineering, went to Stockholm in August to go over the whole collection, and pack up everything Peter was willing to sell us, put it in containers, and get them on a ship.

In September, the containers came in, and around 8 one morning, the first container arrived at our loading dock. Stephen sent Paul Allen a picture of the open container, and he was here by 8:30. He was very excited, because he had been waiting for one of these for over 10 years. He asked Stephen “Can you have it working in 3 weeks?” Stephen said something like “How about by the end of the year?”


KATIA: a PDP10-KA, Serial Number 175.

The first thing we had to do to KATIA to get it running was to upgrade the power supplies. For a lot of our older mainframes, we have decided to leave the old supplies in place, and just move the wiring over to new efficient and reliable switching power supplies. David Cameron and I spent around a week figuring out how to do this, this time around, and I think it looks pretty good!

KATIA Bay 1 power supplies (sideways).

The silver bits, are the new supplies and their mounting plates, mounted either in front of, or next to the original power supply filter capacitors.

We also had to upgrade the power supplies in the memory, where we have designed new modules to replace the old modules, but the parts were scarce, so we just replaced all the old aluminum electrolytic capacitors in the existing modules.

We re-configured the main blowers to run on lazy American electrons (120V), as opposed to those very energetic (240V) European electrons that they were set up for.

We powered up the machine, and I started into the debug process. I started by adjusting all those new power supplies so that all the correct voltages appeared at the correct places, and they all shared the load as best I could.

Now, what can it do? One of the first thing we will need is to be able to read diagnostics on the paper tape reader. With the KI, I had discovered this process requires the adder part of the CPU to work, and so I fired up the Way-Back machine to recover how I had tested the KI back then. It only took two instructions, and ADDI (add immediate) and a JRST (jump). But wait, they have to be stored somewhere! I had to fix some memory.

In PDP10’s there are two kinds of memory, Accumulators (the first 16 locations of memory), and main memory. The Accumulators in most PDP10’s live in special logic inside the CPU, called “Fast Accumulators”. I had to steal a board from one of the other 2 KA’s that came with KATIA, in order to get the Fast AC”s to work.

I then started poking at the MG10 128K word memory box we had hooked up to KATIA. I got 32K of it working, and that was enough to run the paper tape diagnostics. Had to replace the light bulb in the card reader.

Now to check the adder: I loaded the two instructions with the front panel, and no, the adder wasn’t working. It couldn’t propagate a carry past bit 20. After a bunch of poking around I found that there was some kind of a connection problem between cards 2A29 and 2A30, which are in chassis 2 (the middle one), on the top row, about 3/4 of he way from the left. Swapping them and swapping them back seems to fix it.

After about another 4 weeks, with plenty of tearing of hair and gnashing of teeth, lots of board swapping and transistor changing, I finally got KATIA to run the KA versions of diagnostics that we run from paper tape on the KI! From that point the tapes get too big for the paper tape reader to handle easily, so on the KI we run those from the DECtape drives.

It took another couple of weeks to get the DECTape drives and controllers working on both the KA and KI. We needed the KI to work so that we could write the proper diagnostics onto a DECtape for KATIA to read. The problem with that, is that the KI hasn’t been able to boot in a few months. It passes all the paper tape diagnostics, but there is something fishy with the disk interfaces. Bother!

I fixed the rest of the MG10 so we had 128K words of memory working.

While I am working on the KI on a Thursday afternoon, it gets decided we should get KATIA down from the 3rd floor, and on display in 2nd floor computer room before opening on Friday! This involves detaching the DECtape cabinet from one end, the memory from the other end, and disconnecting a whole bunch of cables that go between chassis 3 and the other two chassis’. We also have to make space by moving the IBM 360/30 out of where we want to put KATIA.

We start by disconnecting all the required stuff Thursday afternoon, and getting the 360/30 put back together enough to move, and we move everyting.

By Friday all KATIA’s boxes have power again, and I carefully put all the cables back where they came from the day before. Half of the Museum shows up for powering up KATIA in its (her?) new home. I turn it on, and poke the Read-In button to load up my simple memory diagnostic, and… nothing happens!

Has the adder stopped working again? Well, yes. I wiggle the cards, and voila, KATIA can add again. Yay! I poke the Read-In button again and… not nothing! The tape goes through the reader, but the lights keep incrementing, even after the end of the tape has fallen out of the reader. THAT is not Correct!

Finally on Friday morning two WEEKS later, I have grovelled over the gospel according to DEC, and abased myself before the computer gods to almost understand how Read-In is supposed to work. Hmm, is that a string to pull on?

Read-In works by loading a BLKI instruction into the instruction register of the machine and executing it. PDP10’s are NOT Reduced Instruction Set Computers! The BLKI instruction reads a memory location, a pointer, adds 1 to each half of the data there, puts it back in memory, then does the I/O instruction implied by the “I”, uses the right half of that memory location to point at where in memory to put the data it read from the paper tape reader. Then it looks at the left half of the pointer, and if it is zero, it skips the next instruction, if it wasn’t, it will execute the next instruction.

As I was watching it try to do this with the oscilloscope, it didn’t appear that the part where it was reading the pointer location was taking as long as it should have, considering that pointer was located in core memory at the time, and reading and writing it should have taken a whole micro-second!

The I/O instruction was decoded over in chassis 3, but the instruction timing and memory control was over in chassis 1. Eventually I noticed that the part of the instruction it was skipping was the memory access, which was supposed to be started by a signal called “IOT BLK”, which wasn’t making it to chassis 1. I could see it in chassis 3! The chassis 3 end of the cable had been loose to move the machine, let’s take a look!

Cable 3E06. Note broken resistor near the bottom middle of the card.

I replaced the broken resistor, but it still didn’t work! OK let’s look farther up the cable, did anything else happen in the move?

3E06 to 1L44 cable.

That doesn’t look right! I suspect that somehow, in the move, this cable escaped momentarily enough to get caught under a caster and rubbed away, because it used to work, and the signal in question is one of the top two signals in the cable. The consequences of doing things in a hurry.

Do I pull this cable from one of the other machines we have or do I try to repair it?

Cable repaired.

As soon as this was done, KATIA went back to behaving for me. I ran all the diagnostics we had run, and a few more that we ran from DECtape on the KI, till I got to the one that also failed on the KI. We found the locations in this one that we had to patch for the KI, and it now runs too!

Did I get it done in 3 weeks? Unfortunately no, so Paul Allen didn’t get to see it run, and play with it. He must have known back when he asked about 3 weeks, because it was very close to three weeks from then that he left us.

KATIA: For you Paul! Sorry I didn’t get it working in time.

Bruce Sherry